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Abstract. We evaluate the structure and the thermodynamic properties (internal energy,
pressure and compressibility) of zero-temperature fluids of Bose particles interacting via the
Yukawa potential in dimensionalityD = 3 andD = 2. These systems provide simplified
models for nuclear matter inD = 3 and for assemblies of flux lines in high-Tc superconductors
in D = 2. Our calculations are based on the dielectric formalism, with short-range correlations
being treated in the self-consistent scheme of Singwiet al. In both dimensionalities our results for
the ground-state energy demonstrate a crucial role of short-range correlations and are in good
agreement with those of variational and diffusion Monte Carlo studies over extended ranges
of values for the system parameters (reduced DeBoer length and reduced particle density).
Reasonable agreement is also found for the pressure with the available diffusion Monte Carlo
data inD = 2. The extent of the deviations from the compressibility sum rule in the theory
is assessed for both dimensionalities. On all the above grounds it appears that the present
approach is quite accurate for the high-density fluid and provides a useful starting point for fully
quantitative studies of the low-density fluid.

1. Introduction

The Yukawa potential presents a combination of short range with soft core, in contrast with
stiff-core repulsions (short-range and hard) and with bare Coulomb repulsions (long-range
and soft). In dimensionalityD = 3 it takes the formV3(r) = (εσ/r) exp(−r/σ ), where
ε is an energy scale andσ is a length scale having the meaning of a screening length,
while in D = 2 it is given byV2(r) = εK0(r/σ ) with K0(x) the modified Bessel function,
which decays asx−1/2 exp(−x) at large distance and behaves as−ln(x) at short distance.
The latter behaviour describes the bare Coulomb interaction in a two-dimensional world.
The corresponding forms of the Fourier transforms areV3(q) = 4πεσ 3/(1+ q2σ 2) and
V2(q) = 2πεσ 2/(1+ q2σ 2).

Numerical evaluations of the ground state of fluids of Bose particles interacting via the
Yukawa potential (for short, Yukawa Bose fluids or YBF) have been reported by Ceperley
and coworkers [1–3] from the application of quantal Monte Carlo (QMC) simulations.
The phase diagrams that they found show a solid phase which is stable at sufficiently
strong couplings and melts on expansion or compression. The motivation for studies of
the 3D-YBF comes from models for the interior of pulsars and dense nuclear matter, the
background to this field being given in exhaustive detail in a review article of Baym and
Pethick [4]. Interest in the 2D-YBF is more recent and has been greatly stimulated by the
work of Nelson and Seung [5, 6], who showed that a fluid of flux lines in strongly type-II
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superconducting materials can be mapped onto this system. Following an early variational
Monte Carlo study [7], the transition from an Abrikosov lattice to a liquid of vortices has
been studied by the dislocation mechanism of melting [8] and by the density functional
theory of freezing [9, 10]. A first-order transition to a bosonic superfluid of entangled flux
lines has been reported in a very recent study by the path-integral Monte Carlo method [11].

In the present work we aim at developing the many-body theory of the ground-state
properties of the YBF in bothD = 3 andD = 2. Our main focus is on evaluating the
ground-state thermodynamic properties of these fluids over wide ranges of system parameters
near the phase boundary and on testing the quality of the results against the Monte Carlo
simulation data of Ceperleyet al [2, 3]. The calculations are carried out within the dielectric
formalism by means of the so-called STLS scheme of Singwiet al [12], which embodies
self-consistency in the evaluation of the ground-state pair distribution functiong(r) from
the dynamic structure factor of the fluid via the fluctuation–dissipation theorem. In turn, in
the case of pair potentials the internal energy and the equation of state at zero temperature
can be obtained fromg(r) via integration over the coupling strength. The usefulness of
this approach for this type of calculation has been proven by previous work on a variety
of quantal fluids, including fluids of charged bosons inD = 3 [13, 14] and inD = 2
[13, 15, 16]. In addition, the STLS approach has been very recently used to study the
ground-state structure of the 2D-YBF [17].

The layout of the paper is briefly as follows. Section 2 introduces the essential equations
of the dielectric formalism and sets out their evaluation in the STLS approximation. Various
results for the structure and the elementary excitations of the 3D-YBF are reported in
section 3, similar results for the 2D-YBF having already been given in [17]. Our numerical
results for the ground-state energy and for the equation of state in both dimensionalities are
reported and discussed in sections 4 and 5, respectively. We conclude with a brief summary
in section 6.

2. Linear density response

The Hamiltonian of the system can be written as

H = −
∑
i

3∗2∇2
i +

∑
i>j

vD(rij ) (1)

after taking σ as the unit for lengths andε as the unit for energies. Here,v3(x) =
x−1 exp(−x), v2(x) = K0(x) and3∗ is the DeBoer parameter, which is defined as

3∗ = (h̄2/2mεσ 2)1/2. (2)

3∗ is a measure of the kinetic energy relative to the strength of the interactions (notice that
for the 3D-YBF our definition of3∗ is smaller than that of Ceperleyet al [2] by a factor
2π
√

2).
In addition to3∗, the only other system parameter atT = 0 is the particle densityn as

described by the reduced densityρ = nσD.

2.1. Dielectric formalism in the static-local-field approximation

The linear density response functionχ(q, ω) of the Bose fluid is written in the form

χ(q, ω) = χ0(q, ω)

1− VD(q)[1−G(q)]χ0(q, ω)
(3)
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whereχ0(q, ω) is the density response function of the ideal Bose gas andG(q) is the local
field factor which accounts for short-range correlations in a static approximation [18]. Here,

χ0(q, ω) = 2nε(q)

ω(ω + iη)− ε2(q)
(4)

with ε(q) = q2/2m(h̄ = 1) andη = 0+. Equation (4) assumes that atT = 0 all particles
in the ideal Bose gas are in the ground state at zero energy.

The excitation spectrum which is obtained from equations (3) and (4) consists of a
single collective mode at an energyE(q) given by

E(q) =
{
πnε(2σ)D[1−G(q)]

1+ q2σ 2
ε(q)+ ε2(q)

}1/2

. (5)

The dispersion relation in equation (5) reduces in the long-wavelength limit to that of
acoustic phonons,E(q) → cq. The valuec of the speed of sound is related to the
compressibilityK by c = (mnK)−1/2, where

K−1 = 1
2π(2σ)

Dn2ε[1−G0] (6)

with G0 ≡ G(q = 0). The same value for the compressibility is obtained from the static
density response function in the long-wavelength limit through the relation

lim
q→0

χ(q, ω = 0) = −n2K. (7)

Therefore, consistency between static and dynamic compressibility is ensured by the
theory, irrespectively of the specific choice of the local field factor. Consistency with
the thermodynamic compressibility in the STLS approach will be tested in section 5 below.

In connection with the above result we stress that, unlike the case of charged fluids,
the quantityG0 in equation (6) does not vanish for the YBF. This fact implies that short-
range correlations play a role already in the long-wavelength properties of the YBF, as is
easily understood if one thinks of the Yukawa potential as a screened Coulomb potential
in a plasma. We find in our calculations that the value ofG0 decreases towards zero
as the reduced densityρ is increased: namely, the Coulombic regime is regained as the
interparticle distance becomes much shorter than the screening length. Only in that regime
does the random phase approximation (RPA), which setsG(q) = 0, become correct at long
wavelengths.

The other important quantity that is easily calculated from equations (3) and (4) is the
structure factorS(q), through the fluctuation–dissipation theorem

S(q) = −(nπ)−1
∫ ∞

0
dω Imχ(q, ω). (8)

The result is

S(q) = {1+ 4nmVD(q)q
−2[1−G(q)]}−1/2. (9)

In particular, the long-wavelength behaviour of the structure factor follows in the form

lim
q→0

S(q) = q3∗[2Dπρ(1−G0)]
−1/2. (10)

Equation (9) provides a relationship between the local field factor and the structure factor,
which will be used below to enforce self-consistency according to the STLS scheme.
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2.2. STLS equations

The STLS approach makes use of a second relationship between the local field factor and the
structure factor, which was originally established [12] through an approximate decoupling
in the hierarchy of equations of motion for the Wigner distribution functions. For the YBF
this relationship reads

G(q) = 1

(2π)Dn

∫
dDq ′

q · q′
q2

VD(q
′)

VD(q)
[1− S(|q − q′|)]. (11)

Equations (9) and (11) are to be solved in a self-consistent manner. After performing the
angular integrals in equation (11) and with wavenumbers scaled by the lengthσ , we find

S(q) =
{

1+ 2Dπρ

3∗2q2(1+ q2)
[1−G(q)]

}−1/2

(12)

and

G(q) = 1+ q2

ρq2

∫ ∞
0
kD−1 dk5D(q, k)[1− S(k)] (13)

where

53(q, k) = (2π)−2

[
1+ 1+ k2− q2

4qk
ln

1+ (q − k)2
1+ (q + k)2

]
(14)

and

52(q, k) = (4π)−1

[
1− 1+ k2− q2√

(1+ q2+ k2)2− 4k2q2

]
. (15)

The numerical solution of equations (12) and (13) will be reported in section 3 below.
The value ofG0 follows from theq → 0 limit of equation (13) as

G
(D=3)
0 = 1

6π2ρ

∫ ∞
0

dk
3k2+ k4

(1+ k2)2
[1− S(k)] (16)

in D = 3 and

G
(D=2)
0 = 1

4πρ

∫ ∞
0

dk
2k

(1+ k2)2
[1− S(k)] (17)

in D = 2.
On the other hand, the asymptotic values of the local field factor are obtained from

equation (13) using theq−1 expansion of5D(q, k) and are simply related to the value of
the pair distribution functiong(r) at r = 0:

G(∞) = 1− g(0). (18)

As usual, the pair distribution function is related to the structure factor by

g(r) = 1+ ρ−1(2π)−D
∫

dDq[S(q)− 1] exp(iq · r). (19)

Finally, the large-q behaviour of the structure factor is determined by the value ofG(∞)
as

S(q →∞) = 1− 2Dπρ[1−G(∞)]
3∗2

q−4 (20)

according to equation (12).
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3. Local field factor, structure and elementary excitations of the 3D-YBF

We report in this section the results of the numerical solution of the STLS equations for the
3D-YBF. For similar results on the 2D-YBF the reader is referred to the work of Bulutay
et al [17].

Figures 1 and 2 report the local field factorG(q) at two values of the DeBoer parameter
and at various values of the reduced density. The pairs of values for(3∗, ρ) chosen in
these figures are the same as in QMC runs [2] near the phase boundaries between the fluid
and the solid. The evolution ofG0 towards the bare Coulomb regime with increasingρ
and the closeness ofG(∞) to unity, implying g(r) ≈ 0 asr → 0, are evident from these
figures.

Figure 1. Local field factorG(q) versusqσ for the 3D-YBF at3∗ = 0.0388 and various
values ofρ. Curves atρ = 0.002 44, 0.003 66, 0.004 88, 0.0122, 0.0244 and 0.2441 are plotted
sequentially, with the smallest and largest value ofρ being indicated.

Figures 3 and 4 report the structure factorS(q) at the same values of system parameters.
With increasingρ the position of the main peak inS(q) moves to larger values ofq and
its height shows a re-entrant behaviour. The latter feature reflects the nature of the solid–
fluid phase diagram established in the QMC work [2]: below a threshold value of3∗ for
crystallization a low-density fluid and a high-density fluid enclose the solid phase, so that
the short-range order must decrease as one moves in the fluid phase at constant3∗ towards
both higher and lower densities. The same features are indeed evident also from our results
for the pair distribution functiong(r), which are reported in figures 5–7.

Figures 8 and 9 show a comparison of our results forS(q) and g(r) with the QMC
data of Ceperleyet al [2]. The structural role of short-range correlations in the 3D-YBF is
emphasized through the inclusion of the RPA results: in this case any structure is lacking in
S(q), while g(r) shows a deep negative region at short interparticle separations. It appears
from these figures that in the STLS approach these correlations are still underestimated at
a quantitative level.
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Figure 2. The same as in figure 1, for3∗ = 0.0548 andρ = 0.006 10, 0.008 84, 0.012 21,
0.0298, 0.2441 and 1.133.

Figure 3. Structure factorS(q) versusqσ for the 3D-YBF at the values of the system parameters
used in figure 1.

Finally, figure 10 shows an example of the dispersion curve of the collective modes of
the 3D-YBF for various reduced densities in the small-3∗ (strong-coupling) regime. From
equation (5) the long-wavelength behaviour of the dispersion curve can be written as

E(q) = cq(1− αq2)+ 0(q5) (21)
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Figure 4. Structure factorS(q) versusqσ for the 3D-YBF at the values of the system parameters
used in figure 2.

Figure 5. Pair distribution functiong(r) versusr/σ for the 3D-YBF at the values of the system
parameters used in figure 1. Notice the inversion in the sequence of values ofρ relative to
figures 1–4.

wherec = 3∗[2Dρπ(1−G0)]1/2 (see equation (6)) and the quantityα is given by

α = 1

2

[
1+ G2

1−G0
− 3∗2

2Dπρ(1−G0)

]
(22)
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Figure 6. Pair distribution functiong(r) versusr/σ for the 3D-YBF at the values of the system
parameters used in figure 2.

Figure 7. Pair distribution functiong(r) of the 3D-YBF versusr in units of the mean interparticle
distance, at3∗ = 0.0388 andρ = 0.002 44, 0.0244 and 0.2441.

with G2 the coefficient of theq2 term in a Taylor expansion ofG(q). It is evident from
figure 10 that the free-particle parabola is coming to play a dominant role in the dispersion
curve as the density of the fluid decreases towards the dilute-gas regime.
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Figure 8. Structure factorS(q) of the 3D-YBF at3∗ = 0.200 andρ = 0.0696: the STLS (full
curve) and RPA (dotted curve) results are compared with the QMC results (crosses) of Ceperley
et al [2].

Figure 9. The same as in figure 8, for the pair distribution functiong(r).

4. Ground-state energy

As a first step in the evaluation of the internal energy of the 3D-YBF and 2D-YBF atT = 0,
we calculate their potential energyu0 (per particle and in units of the energy scaleε) from
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Figure 10. Dispersion curve of the collective mode in the 3D-YBF at3∗ = 0.0388 and
ρ = 0.2441, 0.0244, 0.0122 and 0.002 44 (from top to bottom curve).

the expression

uD = 2D−2πρ + cD
∫ ∞

0
qD−1 dq

S(q)− 1

1+ q2
(23)

with c3 = 1/π andc2 = 1/2. Scaled wavenumbers are used in the integral in equation (23).
The first term in the right-hand side of this equation is the Hartree value of the interaction
energy, given bynVD(q = 0)/2.

The ground-state energyEgs can then be evaluated by an integration over the coupling
constantλ,

Egs =
∫ 1

0
dλ
u(λ)

λ
(24)

whereu(λ) refers to a modified HamiltonianH(λ) = K + λP with K andP the kinetic
and the potential energy, respectively. In our approach this implies using in equation (23) a
coupling-constant-dependent structure factorS(q; λ), which is determined self-consistently
with a coupling-constant-dependent local field factorG(q; λ) from equations (11) and (12).

Numerical convergence in the solution of the STLS self-consistency equations is not
easily achieved for the values of the system parameters of present interest. In the case
D = 3 we have obtained convergence for each of the values of(3∗, ρ) studied in the QMC
work [2], when we usedG(q; λ) as input for the first self-consistency cycle in the evaluation
of G(q; λ+1λ). For the 2D-YBF we could not achieve convergence at the lowest values
of (3∗, ρ) examined by Magro and Ceperley [3], and in the case(3∗ = 0.032,ρ = 0.01)
convergence required moving adiabatically withρ and was too slow to allow a calculation
of the ground-state energy.

Our results for the ground-state energy are reported in table 1 for the 3D-YBF and in
table 2 for the 2D-YBF. The overall agreement with the QMC data [2, 3] is quite good,
as can be seen from these tables. It is somewhat better in the caseD = 3 and in both
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dimensionalities it improves as the reduced density increases. It should also be remarked
that for most pairs of system parameters shown in tables 1 and 2 the neglect of short-range
correlations in the RPA leads tonegativevalues of the ground-state energy. This nonsensical
result reflects the large negative values of the RPA pair distribution function that we have
illustrated in figure 9.

Table 1. Ground-state energy of the 3D-YBF (in units ofε) for various values of the DeBoer
parameter3∗ and of the reduced densityρ. The STLS results are compared with the variational
Monte Carlo (VMC) results of Ceperleyet al [2].

3∗ ρ STLS VMC

0.038 8261 0.002 44 0.001 27 0.001 23
0.038 8261 0.003 66 0.002 53 0.002 40
0.038 8261 0.004 88 0.004 15 0.003 99
0.038 8261 0.0122 0.0190 0.017 62
0.038 8261 0.0244 0.0553 0.0519
0.038 8261 0.2441 1.12 1.10
0.054 8068 0.006 10 0.007 06 0.006 70
0.054 8068 0.008 84 0.0127 0.0121
0.054 8068 0.012 21 0.0210 0.0199
0.054 8068 0.0298 0.0780 0.074 46
0.054 8068 0.2441 1.14 1.122
0.054 8068 1.133 6.29 6.262
0.060 6588 0.0292 0.0773 0.0749
0.060 3212 0.0696 0.248 0.240
0.060 6588 0.2441 1.145 1.142
0.060 3212 0.4883 2.52 2.495
0.070 7874 0.0293 0.0801 0.077 47
0.070 7874 0.0696 0.252 0.2460
0.070 7874 0.2441 1.15 1.142

Table 2. Ground-state energy of the 2D-YBF (in units ofε) for various values of3∗ andρ.
The STLS results are compared with the diffusion Monte Carlo (DMC) results of Magro and
Ceperley [3].

3∗ ρ STLS DMC

0.058 0.02 4.03× 10−3 3.085× 10−3

0.065 0.02 4.34× 10−3 3.397× 10−3

0.065 0.03 1.06× 10−2 8.293× 10−3

0.075 0.03 1.13× 10−2 9.068× 10−3

0.085 0.065 5.54× 10−2 4.69× 10−2

0.112 0.065 5.92× 10−2 5.27× 10−2

0.069 0.135 0.179 0.163
0.088 0.135 0.185 0.172
0.05 0.4 0.826 0.799
0.1 0.4 0.865 0.847

5. Pressure and compressibility

The pressure and the compressibility can be written in terms of the first and second derivative
of Egs with respect to the densityρ. As remarked in section 2, the compressibility can also
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be evaluated from the speed of sound and from the static density response function (see
equation (6)). Consistency between the latter value and the thermodynamic value obtained
from the second density derivative ofEgs is known as the compressibility sum rule.

In evaluating the density dependence ofEgs we found it convenient to evaluate first
the density dependence of the structure factorS(q; λ) and to then use the first two density
derivatives of this function in equations (23) and (24). These two quantities are obtained
by solving the integral equations

∂S(q, λ)

∂ρ
= −AD(q)S3(q, λ)

[
1+

∫ ∞
0

dkB(q, k)
∂S(k, λ)

∂ρ

]
(25)

and

∂2S(q, λ)

∂ρ2
= −AD(q)S3(q, λ)

∫ ∞
0

dkBD(q, k)
∂2S(k, λ)

∂ρ2
+ 3

S(q, λ)

[
∂S(q, λ)

∂ρ

]2

(26)

where

AD(q) = 2D−1πλ

3∗2q2(1+ q2)
(27)

and

BD(q, k) = 1+ q2

q2
kD−15D(q, k). (28)

Equations (25) and (26) are Fredholm integral equations of the second kind. We found that,
while a self-consistent method of solution converges, the solution of these equations by a
diagonalization procedure is computationally faster.

Figure 11. First and second density derivative of the structure factorS(q) versusqσ for the
2D-YBF at3∗ = 0.05 andρ = 0.4: ∂S(q)/∂ρ is given by the solid line with the scale on the
left, ∂2S(q)/∂ρ2 by the dotted line with the scale on the right.

Figure 11 reports the values of∂S(q)/∂ρ and ∂2S(q)/∂ρ2 for the 2D-YBF at(3∗ =
0.05, ρ = 0.4). Of course, these functions are strongly structured in the neighbourhood of
the main peak ofS(q).
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The pressureP is evaluated from the expression

P = ρ2
∫ 1

0
dλ
∂uD(λ)

∂ρ
(29)

where

∂uD(λ)

∂ρ
= 2D−2π + cD

∫ ∞
0

dq
qD−1

1+ q2

∂S(q, λ)

∂ρ
. (30)

Similar expressions are easily obtained for the thermodynamic compressibility.

Table 3. STLS values of the pressure (in units ofε/σ 3) and the compressibility (in units of
σ 3/ε) of the 3D-YBF atT = 0, for various values of3∗ andρ.

Compressibility

3∗ ρ Pressure FromEgs(ρ) FromG0

0.038 8261 0.002 44 5.2× 10−6 7.1× 104 11× 104

0.038 8261 0.003 66 1.6× 10−5 2.3× 104 3.6× 104

0.038 8261 0.004 88 3.4× 10−5 1.1× 104 1.6× 104

0.038 8261 0.0122 3.68× 10−4 1.08× 103 1.46× 103

0.038 8261 0.0244 1.98× 10−3 214 265
0.038 8261 0.2441 0.320 1.49 1.57
0.054 8067 0.006 10 6.8× 10−5 5.7× 103 8.2× 103

0.054 8067 0.008 84 1.7× 10−4 2.3× 103 3.1× 103

0.054 8067 0.012 21 3.9× 10−3 1.0× 103 1.4× 103

0.054 8067 0.0298 3.26× 10−2 132 161
0.054 8067 0.2441 0.322 1.48 1.57
0.054 8067 1.133 7.62 6.42× 10−2 6.58× 10−2

0.060 6587 0.0292 3.1× 10−3 1.3× 102 1.6× 102

0.060 3211 0.0696 2.21× 10−2 20.6 23.3
0.060 6587 0.2441 0.323 1.47 1.57
0.060 3211 0.4883 1.36 0.355 0.370
0.070 7873 0.0293 3.2× 10−3 135 164
0.070 7873 0.0696 2.23× 10−2 20.4 23.2
0.070 7873 0.2441 0.324 1.47 1.56

Our results for the pressure and the compressibility are shown in table 3 for the 3D-YBF
and in table 4 for the 2D-YBF. A test against QMC data can be given only for the pressure
in the 2D-YBF and the degree of agreement with the results of Magro and Ceperley [3] in
table 4 appears to be quite reasonable. In both tables the violation of the compressibility
sum rule is tested by reporting the values of the compressibility obtained from the density
dependence of the ground-state energy and from the speed of sound. The differences
between these two sets of values are quite small at high density, but progressively increase
with decreasing density.

6. Summary and conclusions

We have examined in this work the usefulness of the STLS approach in describing
the consequences of short-range correlations in the ground-state properties of the two-
dimensional and three-dimensional Yukawa Bose fluids. Our attention has been mainly
focused on the calculation of the thermodynamic properties of these fluids at zero
temperature, for which we have reported extensive sets of numerical values and tested
them against Monte Carlo data wherever possible.
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Table 4. Pressure (in units ofε/σ 2) and compressibility (in units ofσ 2/ε) of the 2D-YBF at
T = 0. The STLS values of the pressure are compared with the DMC results of Magro and
Ceperley [3].

Pressure STLS compressibility

3∗ ρ STLS DMC FromEgs(ρ) FromG0

0.058 0.02 1.82× 10−4 1.32× 10−4 1.68× 103 3.43× 103

0.065 0.02 1.92× 10−4 1.43× 10−4 1.62× 103 3.27× 103

0.065 0.03 6.82× 10−4 5.27× 10−4 4.83× 102 8.76× 102

0.075 0.03 7.11× 10−4 5.58× 10−4 4.67× 102 8.39× 102

0.085 0.065 6.36× 10−3 5.65× 10−3 60.1 88.2
0.112 0.065 6.69× 10−3 6.07× 10−3 58.3 85.1
0.069 0.135 0.0382 0.0359 11.1 14.0
0.088 0.135 0.0389 0.0372 10.9 13.8
0.05 0.4 0.431 0.426 1.08 1.19
0.1 0.4 0.441 0.439 1.06 1.18

From these comparisons it appears that the STLS results have almost fully quantitative
value for the thermodynamic properties of the fluid phase on the high-density side of the
solid phase and provide a useful starting point for more quantitative studies of the low-
density fluid. It may also be noticed that the dielectric approach as developed in this work
can easily be extended to deal with equilibrium states at finite temperature.

Improvements in the present approach can be sought in two main directions. Firstly, a
fully quantitative account of the thermodynamic compressibility sum rule can be imposed
through a further self-consistency requirement and may be relevant for an evaluation of the
crystal-to-superfluid phase boundary. Secondly, the inclusion of higher dynamic correlations
via a frequency-dependent local field factor will be crucial for a correct description of
excitation spectra.
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